Design, Synthesis and Evaluation of a Novel Antibody-Drug Conjugate based on Cysteine Conjugation and a Polymer Linker

Jidong Zhao ${ }^{1}$, Binyuan Sun ${ }^{2}$, Xuefei Yi^{1}, Qiang Peng ${ }^{1}$,Shuangshaung Ping ${ }^{1}$, Xiaoli Kan ${ }^{2}$,Xiaoxia Wang ${ }^{2}$,Song Liang ${ }^{1}$, Yang Wang ${ }^{2}$ and Weibin Chen ${ }^{1}$ ${ }^{1}$ Shanghai Asymchem Biotechnology Co., Ltd, 4th Floor, Building No. 1, 518 Haoye Road, Jinshan Industrial Park, Jinshan, Shanghai, China ${ }^{2}$ NovacyteTherapeutics Hangzhou Co., Ltd., Room 702-1,No. 858 Mogan Mountain Road, Hangzhou, Zhejiang, China

Summary

NC18 ADC utilizes a polymer-based linker to afford high drug-to-antibody ratio (DAR>10) and significantly improves its potency, bystander effect and anti-drug resistance performance. As an effort to deliver high-quality NC18 materials, we carefully optimized the polymer-based conjugation process and develop
method for DAR analysis.

- AF-HEA cytotoxic payload
- A polymeric linker design
- Controllable bystander effect \& superior PK profile

Conjugation Process Optimization

MI: percentage of maleimide

Challenge: The heterogeneity(MI \& PI) of the polymer-based payload-linker (PL) structures poses challenges to generate consist batch-to-batch materials.
Our solution: DoE experiments to evaluate the PL molecular weight, MIIPI, and the mass ratio between mAb and the PL were performed to acquire the optimized process space with the improved performance to assure the batch-to-batch
 different reaction scalies at

14 TCEP/mAb Molar Ratio
 0.40 .50 .60 .70 .80 .91

$\begin{array}{llll}0.9 & 2.5 & 10 & 1\end{array}$

Chromatography Process Optimization

Challenges: (1) The large-size polymer payload-linker could not be easily removed through a TFF process; (2) Conjugation of polymer payload-linker could induce ADC aggregation.
Our Solution: A cation exchange chromatography method was developed to remove the Our Solution: A cation exchange chromatography method was developed to remove
unconjugated payload-linker molecules as well as ADC aggregates from the conjugation.

Dedicated Method for DAR analysis

Challenge: Traditional analytical methods (eg HIC or MS) are not applicable for DAR analysis. Our Solution: The DAR value of NC18 was determined via the absolute quantitation of the payload moiety hydrolyzed from the ADC molecules.

$\mathrm{DAR}=\frac{\left(C_{A D C-\mathrm{H}_{2} \mathrm{O}}-C_{A D C-A C N}\right) / 1000 \times V_{\text {load }}}{M_{\text {drug }}} \div \frac{C_{\text {mAb }} \times V_{\text {load }}}{M_{\text {mab }}}$

- NC18 3mg/kg TGI(\%) was 84.25\%
- NC18 5mg/kg TGI(\%) was 90.01\%
- All doses did not result in body weight loss
- Croup 11, NC1 18 Sankk Fommation, Ompk, iv, 1001 , Qu

$$
\begin{aligned}
& \rightarrow-\text { Croup 03, NC18, Smpk, iv. 10uls. QW. }{ }^{*}
\end{aligned}
$$

Pharmacokinetics

Toxicology

- No apparent sex-related differences were noted in the pharmacokinetic parameters of NC18 total ne pharmacokinetic param
antibody, ADC, AF-HEA or AF.
- The exposure to the test article in cynomolgus monkeys showed nonlinear pharmacokinetics within the doses administered in this study.
- The ratios of exposure levels of NC18 total antibody, ADC, AF-HEA and AF were higher than those of doses (calculated on $\mathrm{AUC}_{0.672 \mathrm{~h}}$) at the dose range of $0.2 \mathrm{mg} / \mathrm{kg} \sim 1 \mathrm{mg} / \mathrm{kg}$.
- No skin toxicity and neurotoxicity commonly seen with tubulin inhibitors were observed.
- No abnormalities were found in ECG parameters.
- No lung lesion occurring
- The ophthalmic toxicity was only observed in rats manifested by the increased mitotic figures in the corneal epithelium.
- Slight hepatotoxicity and nephrotoxicity were observed in cynomolgus monkeys.

Conclusions

- Optimization of the conjugation process allowed for the generation of high quality NC18 ADC materials with a good batch-to-batch consistency;
- A chromatography process was developed for the removal of unconjugated payload-linker and the ADC aggregates from the conjugation process;
- A dedicated analytical method was developed for the measurement of the DAR values of the polymer linker-based ADC molecules;
- The polymeric conjugation platform afforded high DAR ADCs with the improved potency \& PK profile.

